Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System

C. Macris, C. Leyerle, T. Sanderson, R. Ebel

Enerdyne Solutions www.enerdynesolutions.com

Presented at the 2005 IMAPS Advanced Technology Workshop on Thermal Management
Dinah’s Garden Hotel, Palo Alto CA USA
Outline

- Testing
- Performance Data
- Packaging & Reliability
- Next Steps
- Summary
Testing
Overview

- TIM1 interface tested
- Thermal Test Vehicles (TTVs)
- Θ_{jc} calculated
- Comparative data
Thermal Test Vehicles (TTVs)

- 1.4 cm² die area
- 80 Watts
- Uniform heat flux (57 W/cm²)
- FCPGA package
- Ni-plated Cu lid
Testing

Value of TTV Testing

- Actual chip and lid surface finish, flatness and composition
- Simulate processor hot spots
- Test lid attach process qualities
- Assemblies can be environmentally stressed without disturbing interface
Testing TIMs

<table>
<thead>
<tr>
<th>TIM Type</th>
<th>Shin-Etsu X23-7783D</th>
<th>Chomerics T557</th>
<th>Enerdyne Indigo1</th>
<th>Indium Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Grease</td>
<td>PSH</td>
<td>PCMA</td>
<td>Solder</td>
</tr>
<tr>
<td>Al-filled</td>
<td>PCMA within</td>
<td></td>
<td>Indium-based</td>
<td></td>
</tr>
<tr>
<td>polymer</td>
<td>polymer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Change</td>
<td>N/A</td>
<td>43 / 65</td>
<td>~65</td>
<td>156</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance</td>
<td>~ 0.07 (1 mil BLT*)</td>
<td>0.0625 (70°C, 50 psi)</td>
<td>< 0.04 (80°C, 40 psi)</td>
<td>0.07-0.08 (8-9 mil BLT)</td>
</tr>
<tr>
<td>(°C-cm²/W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>6.0</td>
<td>3.0</td>
<td>> 20</td>
<td>80</td>
</tr>
<tr>
<td>(W/mK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Extrapolated from BLT vs. impedance graph
Testing Platform

 Clamp Fixture
 Leveling Foot (non-conductive)
 Cooling Block
 Foam Insulation
 Thermocouple
 TTV assembly & Socket
 Thermal Test PWB
 Clamp Pad (non-conductive)
 Thermocouple

TC Meter
Heat/Cooling H20 System
Power Supply
4 Wire Ohm
Testing

TTV Assembly

- 10 lbs force
- No lid seal
- Minimum Bondline Thickness (BLT)
- Gold metallization on Indium TTV
Testing Methodology

- Calibration
- Bias of die
- Power, diode resistance & case temperature measured
- 3 measurements / sample
- Θ_{jc} calculated
Performance Data

\[\Theta_{jc} (^0C/W) \]

X23: 0.249
T557: 0.250
Indium: 0.267
Indigo1: 0.189
Historic TIM Qualities

<table>
<thead>
<tr>
<th>Material</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Grease</td>
<td>High bulk conductivity</td>
<td>Pump-out</td>
</tr>
<tr>
<td></td>
<td>Conforms to surface irregularities</td>
<td>Phase separation</td>
</tr>
<tr>
<td></td>
<td>No cure</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td>Reworkable</td>
<td></td>
</tr>
<tr>
<td>Polymer-solder Hybrid (PSH)</td>
<td>Good bulk conductivity</td>
<td>Cure needed</td>
</tr>
<tr>
<td></td>
<td>Conforms to surface irregularities</td>
<td>Reflow needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delamination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-reworkable</td>
</tr>
<tr>
<td>Phase-Change Metal Alloy (PCMA)</td>
<td>High (metal) bulk conductivity</td>
<td>Reflow needed</td>
</tr>
<tr>
<td></td>
<td>Easy handling</td>
<td>Pump-out</td>
</tr>
<tr>
<td></td>
<td>Reworkable</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voiding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidation</td>
</tr>
<tr>
<td>Indium solder</td>
<td>High (metal) bulk conductivity</td>
<td>Needs Au-plate for wettability</td>
</tr>
<tr>
<td></td>
<td>Easy handling</td>
<td>Reflow needed</td>
</tr>
<tr>
<td></td>
<td>No pump-out</td>
<td>Stress cracking, delamination</td>
</tr>
<tr>
<td></td>
<td>No migration</td>
<td>Voiding</td>
</tr>
</tbody>
</table>
Packaging & Reliability

Overview

- Corrosion
- Migration
- Diffusion
Packaging & Reliability

Corrosion Mitigation

- Vent-free continuous lid seal
- Sealant with low vapor transmission rate
- Compatible with PCMA burn-in during lid attach
Packaging & Reliability
Corrosion Mitigation

- Lid seal facilitates controlled environment within lid cavity
- Vapor Phase Corrosion Inhibitor (VPCI)
- VPCI ions on PCMA surface interrupt corrosion cell

Diagram:
- Metal
- Anode
- Cathode
- VPCI Source
- Dissolved VPCI ions
- Molecules of VPCI in gaseous phase
Packaging & Reliability

Corrosion Mitigation

Indigo

PCMA without mitigants

1800 temp cycles

50 temp cycles

Temperature cycling—Service Condition “B”

-55°C to +125°C
Packaging & Reliability

Migration Control

- Deployment of perimeter barrier
- Secondary containment by lid seal
- Passed shock test (Service Condition “E”)
- Passed vibration test (Service Condition “4”)
Packaging & Reliability

Diffusion

<table>
<thead>
<tr>
<th>Material</th>
<th>$D_{100^\circ C}$ (cm2/sec)</th>
<th>Penetration Depth after 10 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>4.06×10^{-47}</td>
<td><1 nm</td>
</tr>
<tr>
<td>Copper</td>
<td>1.22×10^{-15}</td>
<td>~ 10 µm</td>
</tr>
<tr>
<td>Gold</td>
<td>1.50×10^{-18}</td>
<td>< 1 µm</td>
</tr>
<tr>
<td>Indium</td>
<td>3.30×10^{-52}</td>
<td><1 nm</td>
</tr>
<tr>
<td>Bismuth</td>
<td>7.23×10^{-60}</td>
<td><1 nm</td>
</tr>
</tbody>
</table>

- Insufficient energy at typical operating temperatures for measurable diffusion
- Significantly more diffusion of AuSn from eutectic die bonding
Next Steps

- Complete TTV environ. tests
- Reduce voids to <2%
- Further customer qualification
- TIM2 development
PCMA Thermal Interface

Summary

- 25-30% reduction of Θ_{jc}
- No chip metallization required
- Corrosion mitigation demonstrated
- Migration controlled
- Negligible diffusion in Silicon
Thank you.

Chris G. Macris
Enerdyne Solutions
P.O. Box 2660
North Bend, WA. 98045-2660

425-888-1880 x302
chris@enerdynesolutions.com